Determination of the Partial Moiar Volume of $\mathrm{Al}(\mathrm{OH})_{4}{ }^{-}$at Infinite Dilution in Water at $25{ }^{\circ} \mathrm{C}$

Bernard Sanjuan and Gil Michard*
Laboratoire de Géochimle des Eaux, Université Paris 7 et IPG Paris, 75251 Paris Cedex 05, France

Abstract

The densitles of NaAlO_{2} salt have been measured at 25 ${ }^{\circ} \mathrm{C}$ in the molality range $0.01-0.06 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$, In several NaOH concentrations ($0.1-1 \mathrm{~mol}^{\mathrm{k}} \mathrm{kg}^{-1}$). Apparent molar volumes were derived. We were able to determine the apparent molar volume for Infinite dilution only for the three lowest NaOH concentrations ($0.1,0.15$, and 0.25 $\mathrm{mol} \cdot \mathrm{kg}^{-1}$). The partial molar volume of NaAlO_{2} In water at Infinite diliution and the standard-state partial molar volume of $\mathrm{Al}(\mathrm{OH})_{4}^{-}$Ion were then derived. Our value for $V^{\circ}\left[\mathrm{A}(\mathrm{OH})_{4}{ }^{-}\right]=42.3 \pm 1.7 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$ agrees with pubilshed semiempirical correlations.

Introduction

Aluminum is one of the most abundant elements in the earth. According to the low solubility of its compounds, aluminum concentrations in water are controlled by reactions between minerals and aqueous solutions. A lot of work has been recently carried out in order to improve the thermodynamic data base of both aqueous species and solid compounds of aluminum in a wide range of temperature and pressure (1-7).

In many natural waters, the dominant species is $\mathrm{A}(\mathrm{OH})_{4}^{-}$. To our knowledge, no data on the partial molar volume of this ion are avallable. This study is an attempt to determine the partial molar volume of the aluminate lon at $25^{\circ} \mathrm{C}$ from density measurements.

Experimental Section

In a preliminary experiment, we used NaAlO_{2} prepared by the technique of Hemingway and Robie (8). But this compound dissolves very slowly. Finally, we used a commercial sodium aluminate supplied by Prolabo (France) which was dried in a furnace at $80^{\circ} \mathrm{C}$ and stored in a desiccator. The product was analyzed by a gravimetric method: Al was precipitated by 8 -hydroxyquinoline, as described by Claasen and Bastings (9) (accuracy about 0.7%); Na was analyzed by ionic chromatography (Waters columns and Dionex apparatus; accuracy better than 1%) and water by a gravimetric technique. The stoichlometric formula derived from the analyses is $\mathrm{NaAlO}_{2}, 0.23$ $\mathrm{NaOH}, 0.77 \mathrm{H}_{2} \mathrm{O}$. As sodium aluminate is hydrolyzed into alumina in pure water, solutions were made in NaOH solutions.

All solutions were prepared by welghing. Initlal products were water, supplied by a Mill-Q (Millipore) apparatus (dissolved CO_{2} was removed by nitrogen bubbling) a $1 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ "Merck Titrisol" NaOH solution, and sodium aluminate. First, five NaOH solutions of molality $0.09635,0.14464,0.24179,0.48951$, and $0.99674 \mathrm{~mol} \cdot(\mathrm{~kg} \text { of water })^{-1}$ were prepared; they were used (i) or dilute aluminate solutions in the same medium and (ii) as the reference solvent for determining the apparent molar volume. We will refer to these solutions as solvents S_{j}. Second, five $0.06 \mathrm{~mol} \cdot(\mathrm{~kg} \text { solvent })^{-1}$ sodium aluminate stock solutions in sodium hydroxide at the previous molalities $(0.09635,0.14465$, $0.24179,0.48951$, and $0.9967 \mathrm{~mol} \cdot(\mathrm{~kg} \text { water })^{-1}$) were also prepared. Amounts of NaOH and water provided by the sodium aluminate solid were taken into account in the calculation of NaOH molality of each solution. The five solutions were analyzed for Al and Na and the results are in agreement with the

Table I. Aluminum Molality, Density, and Apparent Molar Volumes of the Solutions

set	$m(\mathrm{Al}), 10^{-2} \mathrm{~mol} \cdot$ (kg of solvent $)^{-2}$	$\begin{gathered} d, \\ \mathrm{~g} \cdot \mathrm{~cm}^{-3} \end{gathered}$	$\begin{gathered} \phi_{\mathrm{V}}, \\ \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1} \end{gathered}$
I. $\mathrm{NaOH}, 0.1 \mathrm{M}$	0	1.001382	
	5.73	1.005740	5.98
	5.21	1.005355	5.84
	4.72	1.004974	5.94
	3.49	1.004041	5.91
	2.40	1.003308	5.96
	1.38	1.002435	5.52
II. $\mathrm{NaOH}, 0.15 \mathrm{M}$	0	1.003512	
	5.70	1.007823	6.55
	5.29	1.007540	6.01
	4.70	1.007072	6.46
	3.69	1.006299	6.58
	2.44	1.005358	6.50
	1.22	1.004438	6.12
III. $\mathrm{NaOH}, 0.25 \mathrm{M}$	0	1.007749	
	5.71	1.012070	6.80
	5.09	1.011593	6.91
	4.57	1.011215	6.73
	3.47	1.010391	6.47
	2.44	1.009599	6.59
	1.24	1.008695	6.29
IV. $\mathrm{NaOH}, 0.5 \mathrm{M}$	0	1.018358	
	5.70	1.022603	8.65
	5.06	1.022151	8.21
	4.56	1.021775	8.19
	3.55	1.021039	7.75
	2.41	1.020194	7.11
	1.17	1.019260	6.22
V. $\mathrm{NaOH}, 1 \mathrm{M}$	0	1.039340	
	5.69	1.043318	14.10
	4.88	1.042777	13.68
	4.52	1.042561	12.93
	3.35	1.041731	12.79
	2.35	1.041015	12.94
	1.24	1.040244	11.19

predicted value within 0.6%. These five aluminate solutions (A_{j}) were mixed with the corresponding solvent S_{j} by weighing the solutions and density of the resulting solutions were measured. The molality range for each set was restricted because the low solubility of the salt ($<0.06 \mathrm{~mol} \cdot\left(\mathrm{~kg}\right.$ of solvent) ${ }^{-1}$) and because below $0.01 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$ measurements of molar volumes are not precise enough.

Density measurements were performed at $25^{\circ} \mathrm{C}$ using a Sodev O3D flux densitometer. The densitometer was calibrated at $25^{\circ} \mathrm{C}$ against water ($\rho_{25}=0.997047 \mathrm{~g} \cdot \mathrm{~cm}^{-3}(10)$) and argon ($\rho_{25}=0.0017837 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$). Temperature was maintained at $25 \pm 0.001^{\circ} \mathrm{C}$ by a Setaram temperature regulator. The uncertainty in the density measurement is about $2 \times 10^{-6} \mathrm{~g}$. cm^{-3}.

Resulis

The results of the measurements are presented in Table I. The apparent molar volume ϕ_{V} of a salt can be calculated from the density by

$$
\begin{equation*}
\phi_{V}=(1000 / m)\left(1 / d-1 / d_{0}\right)+M / d \tag{1}
\end{equation*}
$$

where m is the salt molality in moles per kilogram of solvent, M is the molar mass of the salt (81.97 g), d is the density of

Figure 1. Apparent molar volumes versus sodium aluminate molality: (O) set I, NaOH 0.09635 mol.(kg of water) $)^{-1}$; (Δ) set II, NaOH 0.14464 mol $\cdot\left(\mathrm{kg}\right.$ of water) ${ }^{-1}$; (口) set III, $\mathrm{NaOH} 0.24179 \mathrm{~mol} \cdot(\mathrm{~kg}$ of water $)^{-1}$; (*) set IV, NaOH 0.048951 mol.(kg of water) ${ }^{-1}$; (\star) set V , NaOH 0.99674 mol $(\mathrm{kg} \text { of water) })^{-1}$.
the solution, and d_{0} is the density of the solvent, i.e., water + NaOH at a given molality. Values of the apparent molar volumes for each set of measurements, at constant NaOH concentration, are given in Table I.

Uncertainties in apparent molar volumes are related to (i) uncertainty in molallty, (II) uncertainty in density measurements, and (iii) uncertainty in the NaOH molallty. The influence of density uncertainty increases strongly as molality decreases. In our experiments an uncertainty of $2 \times 10^{-6}{\mathrm{~g} \cdot \mathrm{~cm}^{-3}}$ in the density implies an uncertainty in ϕ_{V} of $0.03 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$ for the highest aluminate molally and of $0.15 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$ for the lowest. Uncertalnty in the aluminate molality is mainly due to the illdefined nature of the salt; with $\Delta m / m=0.6 \%$, the uncertainty in ϕ_{V} is about $0.5 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$. As the salt contains NaOH , the molality of NaOH in the aluminate solution can be slightly different from the NaOH molality in the corresponding solvent, because the amount of sodium hydroxide brought by the salt is not known with a sufficient accuracy; the two molalities can differ by about $2 \times 10^{-4} \mathrm{~mol} \cdot(\mathrm{~kg} \text { of water })^{-1}$. This implies an uncertainty in the density of the solvent of about 2×10^{-6} $\mathrm{g} \cdot \mathrm{cm}^{-3}$ for the high aluminate solutions and about 6×10^{-8} $\mathrm{g} \cdot \mathrm{cm}^{-3}$ for the most dilute. The corresponding uncertainty in ϕ_{V} is about $0.4 \mathrm{~cm}^{3} \cdot \mathrm{~mol}$ in both cases. Finally, the total uncertainty is about $1.2 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$.

Discussion

Partlal Molar Volume of NaAlO_{2} in Sodlum Hydroxide Sohtitons. In the data sets corresponding to the sodium hydroxide molalities of $0.1,0.15$, and $0.25 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$, the apparent molar volumes of NaAlO_{2} do not depend on the aluminate concentration. As the NaOH concentration is significantly higher than the aluminum concentration, the ionic strength is mainly fixed by NaOH and ϕ_{V} varles in a very restricted range. The partial molar volume $\bar{V}^{\circ}{ }_{1}$ at infinte dilution in the medium is equal to the constant value of the apparent molar volume. Values of $\bar{V}^{\circ}{ }_{1}$ found for the $0.1,0.15$, and $0.25 \mathrm{molkg}^{-1}$ of NaOH are (5.9 $\pm 1.2),(6.4 \pm 1.2)$, and $(6.6 \pm 1.2) \mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}$.

For the two sets corresponding to the higher NaOH concentrations, we observe a dependency of ϕ_{V} on the NaAlO_{2}

Figure 2. Plot of $\bar{V}^{0}-3 / 2{ }^{3} v^{\circ} c^{1 / 2} /\left(1+c^{1 / 2}\right)$ versus NaOH concentrations. ∇° is the partial molar volume of NaAlO_{2} derived from Figure 1 for sets I, II, and III.
molality (Figure 1). The variations are linear and the two straight lines corresponding to the two highest NaOH molalities are parallel. This trend could be tentatively related to an eventual polymerization of aluminate ion in a strongly basic medium; but we will not discuss any further these two sets of results.

Partlal Molar Vohme of NaAlO_{2} in Water. For the equations developed by Redilich and Mayer (11) and by Swaddle and Mack (12), the partial molar volume \bar{V}° of NaAlO_{2} in water can be derived from the values of \bar{V}°, measurement in NaOH solutions. The three values of $\bar{V}^{\circ}{ }_{1}$ are plotted in a diagram, $\bar{V}^{\circ}{ }_{1}$ ${ }^{3} /{ }_{2} A_{v} c^{1 / 2} /\left(1+c^{1 / 2}\right)$ versus NaOH concentration, c (Figure 2). At $25^{\circ} \mathrm{C}, A_{V}=1.87 \mathrm{~cm}^{3} \cdot \mathrm{~L}^{1 / 2} \cdot \mathrm{~mol}^{-3 / 2}(13)$. By extrapolation to zero NaOH concentration, we obtain an estimation of NaAlO_{2} partial molar volume in water:

$$
\begin{equation*}
\bar{V}^{\circ}=5.0 \pm 1.7 \mathrm{~cm}^{-3} \cdot \mathrm{~mol}^{-1} \tag{2}
\end{equation*}
$$

Following Helgeson et al. (13), the conventional partial molar volume of Na^{+}(i.e., molar volumes computed by assigning H^{+} zero volume $)$ is $-1.3 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$ and then $\nabla^{\circ}\left(\mathrm{AlO}_{2}{ }^{-}\right)=6.3$ $\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}$.

The structure and formula of aluminate in aqueous solution seem to correspond better to $\mathrm{Al}(\mathrm{OH})_{4}{ }^{-}$(14). As pointed out by Sillen (15), for thermodynamic parameters, we cannot distinguish ions differing only by the number of solvent molecules. Thus

$$
\begin{align*}
\bar{V}^{\circ}\left[\mathrm{Al}(\mathrm{OH})_{4}^{-}\right]=\bar{V}^{0}\left(\mathrm{AlO}_{2}^{-}\right)+2 \mathrm{~V}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right) & = \\
42.3 & \pm 1.7 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1} \tag{3}
\end{align*}
$$

This value is not very different from the value of $38 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$ (16) estimated by a semiempirical correlation between entropy and molar volume of ions (13).

In spite of lts low accuracy, the \bar{V}^{0} obtained in this study is very useful for geochemical purposes; for a pressure of 1 kbar , which is the maximal pressure for natural waters at ordinary temperature, an uncertainty of $2 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$ implies an error in $\log K$ less than 0.03 and at this pressure the compressibility of the ion cannot be neglected. But measurements of partial molar volume of aluminate ion at higher temperature are still needed.

Acknowledgment

Density measurements were performed in the "Laboratoire de Physico-Chimie des Solutions", Universite Paris VI, with the help of Prof. P. Letellier. The manuscript benefited from remarks and corrections by P. Letelifier and C. Monnin.

Registry No. $\mathrm{Al}(\mathrm{OH})_{4}{ }_{4}, 14485-39-3 ; \mathrm{NaAlO}_{2}, 1302$-42-7.

Literature Cifed

(1) May, H. M.; Helmke, P. A.; Jackson, M. L. Geochim. Cosmochim. Acta 1979, 43, 861.
(2) Hemingway, B. S. In Advances In Physical Geochemistry; Saxena, K. S., Ed.; Springer: New York, 1982; Vol. 2; p 285.
(3) Couturier, Y.; Michard, G.; Sarazin, G. Geochim. Cosmochim. Acta 1984, 48, 649.
(4) Ohman, L. O.; Sjöberg, S.; Ingri, N. Acta Chem. Scand. 1983, A37, 561.
(5) Sanjuan, B.; Michard, G. Geochim. Cosmochim. Acta 1987, 51, 1823.
(6) Hovey, J. K.; Tremaine, P. R. Geochim. Cosmochim. Acta 1986, 50, 453.
(7) May, H. W.; Kinniburg, D. G.; Helmke, P. A.; Jackson, M. L. Geochim. Cosmochim. Acta 1986, 50, 1667.
(8) Hemingway, B. S.; Robie, R. A. J. Res. U.S. Geol. Survey 1977, 5 , 413.
(9) Claasen, A.; Bastings, L. Analyst 1967, 92, 614.
(10) Kell, G. S. J. Chem. Eng. Data 1987, 12, 66.
(11) Redlich, O.; Meyer, D. Chem. Rev. 1984, 64, 221.
(12) Swaddie, T. W.; Mack, M. K. S. Can. J. Chem. 1983, 61, 473.
(13) Helgeson, H. C.; Kirkham, D. H. Am. J. Sci. 1976, 276, 97.
(14) Moolenaar, R. J.; Evans, J. C.; MacKeever, L. D. J. Phys . Chem. 1970, 74, 3269.
(15) Sillen, L. G. Aodv. Chem. Ser. 1967, No. 67, 31.
(16) Michard, G. Rapport Commisslon Communautés Européennes, No. 8590, 1983.

Recelved for review December 19, 1986. Revised July 15, 1987. Accepted November 23, 1987.

Excess Thermodynamic Properties for the Binary System 1,4-Dioxane-Acetonitrile at $40{ }^{\circ} \mathrm{C}$

Romolo Francesconl*
Istituto Chimico "G. Clamiclan" Unlversitá degli Studl, vla Seimi 2, 40126 Bologna, Italy

Fablo Comelll
Centro di Studlo per la Fisica delle Macromolecole del CNR, via Selmi 2, 40126 Bologna, Italy

Abstract

Vapor-Hquid equilibrium (VLE) and heat of mixing data for the binary system 1,4-dioxane-acetonitrile were determined at $40{ }^{\circ} \mathbf{C}$. Measurements of vapor pressure and denslty were taken on pure components. The excess thermodynamic properties $\mathcal{G}^{\mathbf{E}}$ and $\boldsymbol{T S ^ { E }}$ were calculated from the experimental data, which were correlated by means of Redllch-Kister expressions. Thermodynamic consistency of the VLE data is checked by the area test.

Introduction

Isothermal vapor-liquid equilibrium (VLE) data and liquidphase enthalpy of mixing data were determined for the binary mixtures of 1,4 -dioxane and acetonitrile at $40^{\circ} \mathrm{C}$. The measurements reported in this paper, together with the VLE data from the system 1,3-dioxolane-1,4-dioxane, previously obtained (1), and from 1,3-dioxolane-acetonitrile (following article in this issue), constitute a complete study of the three binary mixtures and supply a thermodynamic basis for the description of the corresponding ternary mixture. Furthermore, a comparison between thermodynamic properties of the binary mixtures of acetonitrile with 1,3 dioxolane and 1,4 dioxane is of interest due to the size of dipole moments of the three molecules considered. In fact, acetonitrile has an unusually large dipole moment, 3.4 D(2), to be compared with the one of 1,2 dioxolane, $1.47 \mathrm{D}(3)$, whereas the symmetric molecule 1,4-dioxane has no appreciable dipole moment.

The experiments were carried out at $40^{\circ} \mathrm{C}$, which is the maximum working temperature for the calorimetric equipment. Since the enthalpy of mixing H^{E} is necessary to test correctly the thermodynamic consistency of isobaric VLE data, values of H^{E} at high temperatures are generally needed over the range of pressure $100-760 \mathrm{mmHg}$, which is usually explored. Isothermal VLE at $25^{\circ} \mathrm{C}$ for 1,4 dioxane-acetonitrile mixtures was

Table I. Refractive Index-Composition Data for the
Mixture Dioxane-Acetonitrile

X_{1}	$n^{26} \mathrm{D}$	X_{1}	$n^{25} \mathrm{D}$	X_{1}	$n^{25} \mathrm{D}$	X_{1}	$n^{25} \mathrm{D}$
0.000	1.3417	0.123	1.3567	0.396	1.3835	0.911	1.4163
0.005	1.3423	0.155	1.3603	0.455	1.3881	1.000	1.4206
0.038	1.3467	0.205	1.3658	0.527	1.3935		
0.074	1.3510	0.289	1.3740	0.736	1.4069		

investigated by D'Avolio et al. (4).

Experimental Section

Chemicals Used. 1,4-Dioxane (dioxane) and acetonitrile were C. Erba (Milan, Italy) RPE-ACS 99.9% products. The major impurity, water 0.1% for acetonitrile and 0.02% for dioxane, was removed by distillation. The refractive indexes n^{25} of purified products are for dioxane 1.4206, (literature value $1.4202(4,5)$) and for acetonitrile 1.3417 (literature values 1.3419 (4), 1.3416 (5)). Dioxane is component 1. Molecular sieves 3 A were added to the solvents to prevent moisture from contaminating them. Syringes were used to fill the still and to bring microsamples of liquid and condensed vapor to the refractometer. Since acetonltrile is toxic in contact with skin, use of gloves was necessary in handling this compound. Ordinary precautions were taken against inflammability of both materials.

VLE Measurements. The isothermal VLE data $P-X-Y$ at $40^{\circ} \mathrm{C}$ were obtained with the equillbrium still manufactured by Fritz GmbH (Normag) Hofheim (West Germany) described in detail by Gmehling (6). Equillbrium temperature t and pressure P in the still were measured with digital instruments declaring accuracy of $0.1^{\circ} \mathrm{C}$ and $1 \mathrm{mbar}(0.75 \mathrm{mmHg})$, respectively. These values were conflimed by repeated experiments on pure water and are assumed as the estimated errors for VLE data of this paper. A check of the equipment was performed following the procedure given in ref 7.

